Tuner

Blips on a radar screen signal movement — flashing and beeping, they get your attention. Squares and circles cross paths, while retinas focus and search for new information. Out of coarse computer screens and old software, designer Simon Renaud freed an idea from pixelated restrictions and created Tuner. With lo-fi roots and a high-minded appreciation for typography, it’s perfectly at home in the age of data-driven journalism and referential design.

Tuner embraces the glitches and quirks of archaic monitors, as well as crude transit displays still in use, and it maintains some effects of a monospace without being one. The benefits of this are many. For titling uses, the fonts don’t need to be rectified; at small sizes, readability is maintained. All while packing an element of surprise — the triangular ‘A’, select square-sided letters, and fast obliques, keep the eyes alert and engaged. Ultimately, Tuner’s sturdy tone transmits confidence, while its cavalier aspects lead you off-the-grid.

10 styles:
5 weights
Roman & Italic

Tuner Light
Tuner Regular
Tuner Medium
Tuner Bold
Tuner Black

Tuner Light Italic
Tuner Italic
Tuner Medium Italic
Tuner Bold Italic
Tuner Black Italic
Tuner Light

Periscope
Deep Stall
Elvis Mitchell
Antenna (Radio)
Halifax, Nova Scotia
Extraterrestrial Species
Carbon-Fiber-Reinforced Polymer

VILLAHERMOSA, TABASCO U.S. Army Special Forces
FLAT-TAIL HORNED LIZARD Thrust Vectoring Prisms
EUROPEAN SPACE AGENCY La Fayette-Class Frigate
420TH FLIGHT TEST SQUADRON Low Light Level Television Cad
“MULTI-SPECTRAL” CAMOUFLAGE Probabilistic Data Association
RANGE AMBIGUITY RESOLUTION Smerinthus Ocellatus Tail Pipe
Tuner Light

BLUE TITS
ARISTOTLE
STEVEN SYKES
BATTLE OF KURSK
OCEANIC-CREATIONS
PELTIER PLATE FACETING
UNITED STATES AIR FORCE PORTAL

DISRUPTIVE COLORATION Reduce Radar Reflection
WATASENIA SCINTILLANS Snap Fasteners Acoustic
STRUCTURAL COLORATION Black-Faced Sandgrouse
MINES INTERCEPTOR AIRCRAFT Försvarets Materielverk (Fmv)
AIR FORCE MATERIEL COMMAND U-Boat Electronic Intelligence
BATTLE OF THE PHILIPPINE SEA National Air And Space Museum
Tuner Light

Stealth technology also termed LO technology (low observable technology) is a sub-discipline of military tactics and passive electronic countermeasures, which cover a range of techniques used with personnel, aircraft, ships, submarines, missiles and satellites to make them less visible (ideally invisible) to radar, infrared, sonar and other detection methods. It corresponds to military camouflage for these parts of the electromagnetic spectrum (Multi-spectral camouflage). Development of modern stealth technologies in the United States began in 1958, where earlier attempts in preventing radar tracking of its U-2 spy planes during the Cold War by the Soviet Union had been unsuccessful. Designers turned to develop a particular shape for planes that tended to reduce detection, by redirecting electromagnetic waves from radars. Radar-absorbing material was also tested and made to reduce or block radar signals that reflect off from the surface of planes. Such changes to shape and surface composition form stealth technology as currently used on the Northrop Grumman B-2 Spirit “Stealth Bomber”. The concept of stealth is to operate or hide without giving enemy forces any indications as to the presence of friendly forces. This concept was first explored through camouflage by blending into the background visual clutter. As the potency of detection and interception technologies (radar, Infra-red search and track, surface-to-air missiles, etc.) have increased over time, so too has the extent to which the design and operation of military personnel and ve
Dielectric Plot Holes Antenna Gain Tailless Aircraft Palmdale, California Six-Color Desert Pattern Non-Fictional Naval Architecture

DISTANCE MEASUREMENT Losing All Capitalization CARTER ADMINISTRATION The Enterprise Incident ASCLEPIAS CURASSAVICA Glaucidium Californicum PULSE REPETITION FREQUENCY Negative Index Metamaterials ARMSTRONG WHITWORTH A.W.52 Surface-To-Air Missiles Lasers CRYPTIC AGGRESSIVE MIMICRY Probabilistic Data Association
Tuner Light Italic

BILL DUKE
DEATH RAY
APOSEMATISM
IRON BALL PAINT
SEXUALLY RECEPTIVE
BATTLE OF THE ATLANTIC
ORGANIC LIGHT-EMITTING DIODES

PULSE FORMING NETWORK Whiteman Air Force Base
PELTIER COOLING PLATES Moving Target Indicator
IMPERIAL RUSSIAN NAVY Airborne Radar Systems
RANGE AMBIGUITY RESOLUTION First Boer War Retroreflective
FLOUNDER HANDWRITING STYLE New Kensington, Pennsylvania
GROUND-CONTROLLED APPROACH Naval Research Laboratory Hill
Tuner Light Italic

Stealth technology also termed LO technology (low observable technology) is a sub-discipline of military tactics and passive electronic countermeasures, which cover a range of techniques used with personnel, aircraft, ships, submarines, missiles and satellites to make them less visible (ideally invisible) to radar, infrared, sonar and other detection methods. It corresponds to military camouflage for these parts of the electromagnetic spectrum (Multi-spectral camouflage). Development of modern stealth technologies in the United States began in 1958, where earlier attempts in preventing radar tracking of its U-2 spy planes during the Cold War by the Soviet Union had been unsuccessful. Designers turned to develop a particular shape for planes that tended to reduce detection, by redirecting electromagnetic waves from radars. Radar-absorbent material was also tested and made to reduce or block radar signals that reflect off from the surface of planes. Such changes to shape and surface composition form stealth technology as currently used on the Northrop Grumman B-2 Spirit “Stealth Bomber”. The concept of stealth is to operate or hide without giving enemy forces any indications as to the presence of friendly forces. This concept was first explored through camouflage by blending into the background visual clutter. As the potency of detection and interception technologies (radar, Infrared search and track, surface-to-air missiles, etc.) have increased over time, so too has the extent to which the design and operation of military p
Elevators
Hail Spike
Phalaenopsis
Angle-of-Attack
Colour Temperature
American Film Institute
Smerinthus Ocellatus Aesthetics

VISBY-CLASS CORVETTES Next-Generation Bomber
FRED DEKKER PETER OPIE Arnold Schwarzenegger
SPARK-GAP TRANSMITTER Radar Warning Receiver
3RD NAVAL WARFARE FLOTILLA Tinker Air Force Base Atlantis
STEVEN F. UDVAR-HAZY CENTER Pakistan Norwegian Campaign
PULSE REPETITION FREQUENCY Computational Fluid Dynamics
RECEIVER
GRID FINS
ISSEY MIYAKE
PLASMA STEALTH
ALIEN VS. PREDATOR
DIAMAGNETIC CONSTANT
ESSEX-CLASS AIRCRAFT CARRIERS

ELECTRICAL GENERATORS
ITU RADIO REGULATIONS
DISRUPTIVE COLORATION
CBU-97 SENSOR FUZED WEAPON
RADAR INTERFERENCE EFFECTS
STEVEN F. UDVAR-HAZY CENTER

Smithsonian Institution
Measure Or Performance
Odessa State University
Massive Ordnance Penetrator
Försvarets Materielverk (Fmv)
Heat-Seeking Missile Selective
Some military uniforms are treated with chemicals to reduce their infrared signature. A modern “stealth” vehicle is designed from the outset to have a chosen spectral signature. The degree of stealth embodied in a particular design is chosen according to the predicted capabilities of projected threats. The concept of camouflage is known to predate warfare itself. Hunters have been using vegetation to conceal themselves perhaps as long as people have been hunting. In England, irregular units of gamekeepers in the 17th century were the first to adopt drab colours (common in 16th century Irish units) as a form of camouflage, following examples from the continent. During World War I, the Germans experimented with the use of Cellon (Cellulose acetate), a transparent covering material, in an attempt to reduce the visibility of military aircraft. Single examples of the Fokker E.III Eindecker fighter monoplane, the Albatros C.I two-seat observation biplane, and the Linke-Hofmann R.I prototype heavy bomber were covered with Cellon. In fact, sunlight glinting from the material made the aircraft even more visible. Cellon was also found to be quickly degraded both by sunlight and in-flight temperature changes so the attempt to make transparent aircraft was not proceeded with. In 1916, the British modified a small SS class airship for the purpose of night-time reconnaissance over German lines on the Western Front. Fitted with a silenced engine and a black gas bag, the craft was both invisible and inaudible from the ground but several
Chrysalis
Broadside
Eads Phoenix
Abralia Veranyi
University Of Tokyo
Over-The-Horizon Radar
Dazzle Camouflage Installations

ANTI-REFLECTIVE PAINT Measure Or Performance
SPARK-GAP TRANSMITTER Prometheus Spaceplane
STRUCTURAL COLORATION Kazimierz Siemienowicz
3RD NAVAL WARFARE FLOTILLA Organic Light-Emitting Diodes
STEVEN F. UdVAR-HAZY CENTER Reflection (Physics) Vegetius
RADAR INTERFERENCE EFFECTS Digital Camouflage Metacritic
COLLAGEN
EYE-SPOTS
MIL-STD-1553
ARNOLD WILKINS
NYQUIST FREQUENCY
GENOMFÖRANDEGRUPPEN
ARLEIGH BURKE-CLASS DESTROYER

“BBC NEWS TECHNOLOGY” R/Greenberg Associates
CIRCULAR POLARIZATION Darpa John Graham Kerr
BATTLE OF THE ATLANTIC Geologists Searchlights
PULSE REPETITION FREQUENCY Boris Ivanovich Cheranovsky
WEATHER FORMATIONS DANAUS Universal Camouflage Pattern
UNIVERSITY OF TEXAS, AUSTIN Sidelobes Unified Field Theory
Some military uniforms are treated with chemicals to reduce their infrared signature. A modern “stealth” vehicle is designed from the outset to have a chosen spectral signature. The degree of stealth embodied in a particular design is chosen according to the predicted capabilities of projected threats. The concept of camouflage is known to predate warfare itself. Hunters have been using vegetation to conceal themselves perhaps as long as people have been hunting. In England, irregular units of gamekeepers in the 17th century were the first to adopt drab colours (common in 16th century Irish units) as a form of camouflage, following examples from the continent. During World War I, the Germans experimented with the use of Cellon (Cellulose acetate), a transparent covering material, in an attempt to reduce the visibility of military aircraft. Single examples of the Fokker E.III Eindecker fighter monoplane, the Albatros C.I two-seat observation biplane, and the Linke-Hofmann R.I prototype heavy bomber were covered with Cellon. In fact, sunlight glinting from the material made the aircraft even more visible. Cellon was also found to be quickly degraded both by sunlight and in-flight temperature changes so the attempt to make transparent aircraft was not proceeded with. In 1916, the British modified a small SS class airship for the purpose of night-time reconnaissance over German lines on the Western Front. Fitted with a silenced engine and a black gas bag, the craft was both invisible and inaudible from the ground.
Concorde Satellites Hyannis Port Rifle Regiments Comme Des Garçons Ionospheric Reflection Space-Time Adaptive Processing

Hung Medium

NAVY UDT
PHOTINUS
CENTIMETRES
FEMMES FATALES
DIFFUSED LIGHTING
OBSERVATION AIRCRAFT
A CRASH SHORTLY AFTER TAKEOFF

SUPersonic Transport Engineering Tolerances
Counter-Surveillance Jean-Claude Van Damme
Campephilus Robustus Over-The-Horizon Radar
National Research Council Maurice-Alexandre Pouyanne
Radar-Absorbing Materials Nevada Skjold-Class Corvette
Farscape Live Fire Exercise Arleigh Burke-Class Destroyer
Tuner Medium

Diffused lighting camouflage, a ship borne form of counter-illumination camouflage, was trialled by the Royal Canadian Navy from 1941 to 1943. The concept was followed up, but for aircraft, by the Americans and the British: in 1945 a Grumman Avenger with Yehudi lights, reached 3,000 yards (2,700 m) from a ship before being sighted. This ability was rendered obsolete by radar. The U-boat U-480 may have been the first stealth submarine. It featured an anechoic tile rubber coating, one layer of which contained circular air pockets to defeat ASDIC sonar. Radar absorbent rubber/semiconductor composite paints and materials (codenames: “Sumpf”, “Schornstefeger”) were used by the Kriegsmarine on submarines in World War II. Tests showed they were effective in reducing radar signatures at both short (centimetres) and long (1.5 metre) wavelengths. In 1960, the first stealth technology development program was initiated by USAF, by reducing the radar-cross-section of a Ryan Q-2C Firebee drone. This was achieved through specially designed screens over the air intake, radar-absorbent material on the fuselage and a special radar-absorbing paint. In 1958, the U.S. Central Intelligence Agency requested funding for a reconnaissance aircraft to replace the existing U-2 spy planes, and Lockheed secured contractual rights to produce it. “Kelly” Johnson and his team at Lockheed’s Skunk Works were assigned to produce the A-12 (or OXCART), the first of the previously top secret Blackbird series, which operated at
Lockheed
Scattered
Optical Fiber
Magnetic Mines
The Predator (Film)
Sachsen-Class Frigates
Geometric Theory Of Diffraction

EDGAR RICE BURROUGHS Continuous-Wave Radar
REVIEW AGGREGATOR B-2 Multi-Scale Camouflage
NUMERICAL ALGORITHMS Finnish Defence Forces
GENERAL ACCOUNTING OFFICE Supersonic Transport Pacific
INFRA-RED SEARCH AND TRACK The Terminator U.S. Congress
SIERRA NEVADA CORPORATION Essex-Class Aircraft Carriers
Diffused lighting camouflage, a shipborne form of counter-illumination camouflage, was trialled by the Royal Canadian Navy from 1941 to 1943. The concept was followed up, but for aircraft, by the Americans and the British: in 1945 a Grumman Avenger with Yehudi lights, reached 3,000 yards (2,700 m) from a ship before being sighted. This ability was rendered obsolete by radar. The U-boat U-480 may have been the first stealth submarine. It featured an anechoic tile rubber coating, one layer of which contained circular air pockets to defeat ASDIC sonar. Radar absorbent rubber/semiconductor composite paints and materials (codenames: “Sumpf”, “Schornsteinfeger”) were used by the Kriegsmarine on submarines in World War II. Tests showed they were effective in reducing radar signatures at both short (centimetres) and long (1.5 metre) wavelengths. In 1960, the first stealth technology development program was initiated by USAF, by reducing the radar-cross-section of a Ryan Q-2C Firebee drone. This was achieved through specially designed screens over the air intake, radar-absorbent material on the fuselage and a special radar-absorbing paint. In 1958, the U.S. Central Intelligence Agency requested funding for a reconnaissance aircraft to replace the existing U-2 spy planes, and Lockheed secured contractual rights to produce it. “Kelly” Johnson and his team at Lockheed’s Skunk Works were assigned to produce the A-12 (or OXC ART), the first of the previously top secret Blackbird series, which oper
Ufologist
Radiation
Stone Island
Nibelungenlied
Spectral Signature
Look-Down/Shoot-Down
Radiolocation-Satellite Service

NICOLAS ROLAND PAYEN Sachsen-Class Frigates
TRAGELAPHUS SCRIPTUS Numerical Calculations
RADAR IN WORLD WAR II Edwards Air Force Base
CONSOLIDATED PBY CATALINA “Crysis 3: Adaptive Warfare”
FLY-BY-WIRE CONTROL SYSTEM Dielectric Constant Thayer’s
PHOSPHORESCENT ORGANISMS Philadelphia Naval Shipyard
The possibility of designing aircraft in such a manner as to reduce the infrared radar cross-section was recognized in the late 1930s, when the first radar tracking systems were employed, and it has been known since at least the 1960s that aircraft shape makes a significant difference in detectability. The Avro Vulcan, a British bomber of the 1960s, had a remarkably small appearance on radar despite its large size, and occasionally disappeared from radar screens entirely. It is now known that it had a fortuitously stealthy shape apart from the vertical element of the tail. Despite being designed before a low radar cross-section (RCS) and other stealth factors were ever a consideration, a Royal Aircraft Establishment technical note of 1957 stated that of all the aircraft so far studied, the Vulcan appeared by far the simplest radar echoing object, due to its shape: only one or two components contributing significantly to the echo at any aspect, compared with three or more on most other types. While writing about radar systems, authors Simon Kingsley and Shaun Quegan singled out the Vulcan’s shape as acting to reduce the RCS. In contrast, the Tupolev 95 Russian long-range bomber (NATO reporting name ‘Bear’) was conspicuous on radar. It is now known that propellers and jet turbine blades produce a bright radar image; the Bear has four pairs of large (5.6 meter diameter) contra-rotating propellers. Another important factor is internal construction. Some stealth aircraft have skin that is radar transparent...
Tuner Bold Italic

Red Army

Kotmoran

John Thomas

Northrop Yb-35

Personal Lubricant

Coastal Trading Vessel

Radar Cross Section Reductions

SIGNAL TO NOISE RATIO Prey Against Predators
CANARD (AERONAUTICS) Coastal Trading Vessel
EVOLUTIONARY BIOLOGY Distractive Camouflage
ELECTROMAGNETIC SPECTRUM Aliens Vs. Predator: Requiem
COMPUTATIONAL HOLOGRAPHY Congressional Budget Office
GEE BEE R-1 SUPER SPORTSTER Philadelphia Naval Shipyard
FERRITES
DOLPHINS
A SMALL PART
SPLIT AILERONS
COMMERCE RAIDERS
MONARCH MAZARI PALM
SPACE SHUTTLE DESIGN PROCESS

ALBERT EINSTEIN ZEBRA Disruptively-Patterned
INTER-SEXUAL MIMICRY Sachsen-Class Frigates
TAILLESS AIRCRAFT BAC Look-Down/Shoot-Down
F-35 LIGHTNING II BISMARCK “Multi-Spectral” Camouflage
THE SIX MILLION DOLLAR MAN Purple Gallinule Total Recall
FLY-BY-WIRE CONTROL SYSTEM Camouflaged Textile Patterns
The possibility of designing aircraft in such a manner as to reduce the IR radar cross-section was recognized in the late 1930s, when the first radar tracking systems were employed, and it has been known since at least the 1960s that aircraft shape makes a significant difference in detectability. The Avro Vulcan, a British bomber of the 1960s, had a remarkably small appearance on radar despite its large size, and occasionally disappeared from radar screens entirely. It is now known that it had a fortuitously stealthy shape apart from the vertical element of the tail. Despite being designed before a low radar cross-section (RCS) and other stealth factors were ever a consideration, a Royal Aircraft Establishment technical note of 1957 stated that of all the aircraft so far studied, the Vulcan appeared by far the simplest radar echoing object, due to its shape: only one or two components contributing significantly to the echo at any aspect, compared with three or more on most other types. While writing about radar systems, authors Simon Kingsley and Shaun Quegan singled out the Vulcan’s shape as acting to reduce the RCS. In contrast, the Tupolev 95 Russian long-range bomber (NATO reporting name ‘Bear’) was conspicuous on radar. It is now known that propellers and jet turbine blades produce a bright radar image; the Bear has four pairs of large (5.6 meter diameter) contra-rotating propellers. Another important factor is internal construction. Some stealth aircraft have skin that is radar tr
Tuner Black

Succinea
Raytheon
Crustaceans
Esprit De Corps
Impedance Yamato
Flight Control Systems
HL-20 Personnel Launch System

UNITED ARAB EMIRATES Predators Against Prey
COUNTERILLUMINATION Metamaterial Cloaking
INTERCEPTOR AIRCRAFT Principal Photography
CONSTANT FALSE ALARM RATE Jean-Charles De Castelbajac
DIGITAL SIGNAL PROCESSING Low Probability Of Intercept
COINCIDENCE RANGEFINDERS 1983 Negev Mid-Air Collision
BANANAS
FLOUNDER
TSETSE FLIES
F/A-18 HORNETS
ST MARGARET’S BAY
COMMON HAWK-CUCKOO
NAVAL INVESTIGATIVE SERVICE
INTERCEPTOR AIRCRAFT
OPERATION JUST CAUSE
GRUMMAN TBM AVENGER
MYRMECONEMA NEOTROPICUM
FLOATING LANDING PLATFORM
GLOBAL POSITIONING SYSTEM
Genomförandegruppen
Ionospheric Reflection
Aerial Reconnaissance
Office Of Naval Research Cia
Battle Of Goodenough Island
Infrared Countermeasure Rdf
The most efficient way to reflect radar waves back to the emitting radar is with orthogonal metal plates, forming a corner reflector consisting of either a dihedral (two plates) or a trihedral (three orthogonal plates). This configuration occurs in the tail of a conventional aircraft, where the vertical and horizontal components of the tail are set at right angles. Stealth aircraft such as the F-117 use a different arrangement, tilting the tail surfaces to reduce corner reflections formed between them. A more radical method is to eliminate the tail completely, as in the B-2 Spirit. The B-2’s clean, low-drag flying wing configuration not only gives it exceptional range but also reduces its radar profile. The flying wing design most closely resembles a so-called infinite flat plate (as vertical control surfaces dramatically increase RCS), the perfect stealth shape, as it would have no angles to reflect back radar waves. In addition to altering the tail, stealth design must bury the engines within the wing or fuselage, or in some cases where stealth is applied to an extant aircraft, install baffles in the air intakes, so that the compressor blades are not visible to radar. A stealthy shape must be devoid of complex bumps or protrusions of any kind, meaning that weapons, fuel tanks, and other stores must not be carried externally. Any stealthy vehicle becomes un-stealthy when a door or hatch opens. Parallel alignment of edges or even surfaces is also often used in stealth designs. The technique i
Thin Film
Selective
Interdiction
Purkinje Effect
Cultural Functions
Disruptive Camouflage
Adaptive Coloration In Animals

HEAT-SEEKING MISSILE Automatic Gain Control
COUNTERILLUMINATION Flight Control Systems
EDGAR RICE BURROUGHS Attack On Pearl Harbor
RADAR-ABSORBENT MATERIAL Passive (Multistatic) Radars
DIGITAL SIGNAL PROCESSING Steven F. Udvar-Hazy Center
COINCIDENCE RANGEFINDERS Electronic Countermeasures
Tuner Black Italic

HUNGARY
INFRARED
LEPIDOPTERA
AGALMA OKENII
BIRDS OF PARADISE
WEATHER FORECASTING
THE PHILADELPHIA EXPERIMENT

AERODYNAMIC HEATING Ohio-Class Submarines
RE-ENTRANT TRIANGLES Epidendrum Ibaguense
ST MARGARET’S BAY CIA The Colours Of Animals
DEUS EX: HUMAN REVOLUTION John Henry Frederick Bacon
RADAR ENGINEERING DETAILS Ground-Controlled Approach
HUYGENS–FRESNEL PRINCIPLE Joint Direct Attack Munitions
The most efficient way to reflect radar waves back to the emitting radar is with orthogonal metal plates, forming a corner reflector consisting of either a dihedral (two plates) or a trihedral (three orthogonal plates). This configuration occurs in the tail of a conventional aircraft, where the vertical and horizontal components of the tail are set at right angles. Stealth aircraft such as the F-117 use a different arrangement, tilting the tail surfaces to reduce corner reflections formed between them. A more radical method is to eliminate the tail completely, as in the B-2 Spirit. The B-2’s clean, low-drag flying wing configuration not only gives it exceptional range but also reduces its radar profile. The flying wing design most closely resembles a so-called infinite flat plate (as vertical control surfaces dramatically increase RCS), the perfect stealth shape, as it would have no angles to reflect back radar waves. In addition to altering the tail, stealth design must bury the engines within the wing or fuselage, or in some cases where stealth is applied to an extant aircraft, install baffles in the air intakes, so that the compressor blades are not visible to radar. A stealthy shape must be devoid of complex bumps or protrusions of any kind, meaning that weapons, fuel tanks, and other stores must not be carried externally. Any stealthy vehicle becomes un-stealthy when a door or hatch opens. Parallel alignment of edges or even surfaces is also often used in stealth designs. The technique i
Tuner

<table>
<thead>
<tr>
<th>OpenType features</th>
</tr>
</thead>
<tbody>
<tr>
<td>All caps [CPSP]</td>
</tr>
<tr>
<td>Case-sensitive forms [CASE]</td>
</tr>
<tr>
<td>Standard ligatures [LIGA]</td>
</tr>
<tr>
<td>Discriminatory ligatures [DLIG]</td>
</tr>
<tr>
<td>Slashed zero [ZERO]</td>
</tr>
<tr>
<td>Tabular lining figures [TNUM + LNUM]</td>
</tr>
<tr>
<td>Tabular oldstyle figures [TNUM + ONUM]</td>
</tr>
<tr>
<td>Proportional lining figures [PNUM + LNUM]</td>
</tr>
<tr>
<td>Proportional oldstyle figures [PNUM + ONUM]</td>
</tr>
<tr>
<td>Superscript/Superior [SUPS]</td>
</tr>
<tr>
<td>Subscript/Inferior [SINF]</td>
</tr>
<tr>
<td>Numerator [NUMR]</td>
</tr>
<tr>
<td>Denominator [DENOM]</td>
</tr>
</tbody>
</table>

OFF

<table>
<thead>
<tr>
<th>Feature</th>
</tr>
</thead>
<tbody>
<tr>
<td>Lowercase</td>
</tr>
<tr>
<td>[Case-sensitive]</td>
</tr>
<tr>
<td>fi fl fb ff fh fj fk ft</td>
</tr>
<tr>
<td>ffb ffh ffi ffj fkk ffl</td>
</tr>
<tr>
<td>fft</td>
</tr>
<tr>
<td>Th</td>
</tr>
<tr>
<td>0123456789</td>
</tr>
<tr>
<td>H0123456789</td>
</tr>
<tr>
<td>H\text{superscript}</td>
</tr>
<tr>
<td>H0123456789</td>
</tr>
<tr>
<td>H\text{..}()+-x\div=€$¢</td>
</tr>
<tr>
<td>H0123456789</td>
</tr>
<tr>
<td>H\text{..}()+-x\div=€$¢</td>
</tr>
<tr>
<td>H0123456789</td>
</tr>
<tr>
<td>H\text{..}()+-x\div=€$¢</td>
</tr>
</tbody>
</table>

ON

<table>
<thead>
<tr>
<th>Feature</th>
</tr>
</thead>
<tbody>
<tr>
<td>UPPERCASE</td>
</tr>
<tr>
<td>[CASE-SENSITIVE]</td>
</tr>
<tr>
<td>fi fl fb ff fh fj fk ft</td>
</tr>
<tr>
<td>ffb ffh ffi ffj fkk ffl</td>
</tr>
<tr>
<td>fft</td>
</tr>
<tr>
<td>Th</td>
</tr>
<tr>
<td>0123456789</td>
</tr>
<tr>
<td>H0123456789</td>
</tr>
<tr>
<td>H\text{superscript}</td>
</tr>
<tr>
<td>H0123456789</td>
</tr>
<tr>
<td>H\text{..}()+-x\div=€$¢</td>
</tr>
<tr>
<td>H0123456789</td>
</tr>
<tr>
<td>H\text{..}()+-x\div=€$¢</td>
</tr>
<tr>
<td>H0123456789</td>
</tr>
<tr>
<td>H\text{..}()+-x\div=€$¢</td>
</tr>
</tbody>
</table>
OpenType features

Fractions [FRAC]

Ordinals [ORDN]

Stylistic set 1: Alternate B & D [SS01]

Stylistic set 2: Alternate 0 [SS02]

Stylistic set 3: Alternate r [SS03]

Stylistic set 4 & 5: Circled numbers [SS04 & SS05]

Stylistic set 6: Arrows [SS06]

Stylistic set 7: Dingbats [SS07]

Bill Duke

Origin Of Species

Predator

012345678910
012345678910

<>+-x÷=±

abcdefghijklmnopqrstuvwxyz

OFF

ON

1/4 1/2 3/4 0/0 0/00

2ª 2º N° N° N° N°

2ª 2º N° N° N° N°

Bill Duke

Origin Of Species

Predator

012345678910
012345678910

<>+−×÷=±

←→↑↓↖↗↘↙

••••❤️щит
Information

Supported languages: Afrikaans, Albanian, Asu, Basque, Bemba, Bena, Bosnian, Catalan, Chiga, Congo Swahili, Cornish, Croatian, Czech, Danish, Dutch, Emu, English, Esperanto, Estonian, Faoese, Filipino, Finnish, French, Galician, Ganda, German, Gusii, Hungarian, Icelandic, Indonesian, Inuktitut, Irish, Italian, Jola-Fonyi, Kabuverdianu, Kalenjin, Kamba, Kikuyu, Kinyarwanda, Latvian, Lithuanian, Luo, Luyia, Machame, Makuwua-Meetto, Makonde, Mbuga, Mawonja, Mithiyia, Mwamnushu, Muyangi, Ndebele, Norwegsh Bokmål, Norwegsh Nynorsk, Nyamwezi, Nyamwezi, Nyamwezi, Nyanyuki, Oromo, Polish, Portuguese, Romanian, Romany, Rombo, Rundi, Rwa, Samburu, Sango, Senna, Shambala, Shona, Slovak, Slovenian, Soga, Somali, Spanish, Swahili, Swedish, Swiss German, Taita, Teso, Turkmen, Vhunjo, Welsh, Zulu.

Designer: Simon Renaud

Contact: Production Type
255 rue du Faubourg Saint-Antoine
75011 Paris, France
+33 (0)7 68 72 24 00
www.productiontype.com

Copyright: © 2018 Production Type, all rights reserved.
Production Type is a registered trademark of Production Systems SAS.