Proto Grotesk Mono

Grotesk Mono is an exploration of the Proto pattern into the fixed-width realm, immobilizing some more radical traits of the “Proto” series. This voluntarily restrained family (four styles) distills a rough-edged aesthetic that’s rustic and dry. Proto Grotesk Mono develops an administrative look that sobers up the strangeness of regular Proto styles, through prominent features such as squared dots, seriffed “l”, “i”, “f” and “r”. The texture of Proto Grotesk Mono strikes one as straightened, almost machine-like, creating an matchless mood, the kind of mood that a drawing machine could achieve. As mechanical as Proto Grotesk was, Proto Grotesk Mono looks and feels more technical, and will be a cinch to calmly assert a sense of order, not without a reference to Sol LeWitt’s “Paragraphs on Conceptual Art” and his machine-becoming idea.

In Proto Grotesk Mono, the bureaucratic seriousness is balanced by relatively softer details, such as an oval structure instead of a traditionally circular one. Following the incursions of Production Type’s Minotaur into mechanized CAD aesthetics, Proto Mono is another step in alleviating the tension between the mechanical and the hand-drawn, between faceless systems and humane considerations.

Proto Grotesk Mono ExtraLight
Proto Grotesk Mono Light
Proto Grotesk Mono Regular
Proto Grotesk Mono Bold
GEOCELLS
DIAGONALS
CARTOGRAPHY
THE TELESCOPE
MARSHALL ISLANDS
PLASTIC DEFORMATION
PAVEMENT MANAGEMENT SYSTEM
DISTANCES TO OBJECTS
Christopher Columbus
BACKGROUND RADIATION
Radar Plot Technique
RESEARCH METHODOLOGY
Discovery Of America
INTEGRATED BRIDGE SYSTEMS
Long-Range Communications
CREATING WORK RADAR RANGE
Quartz Crystal Oscillator
SPRING AND AUTUMN PERIODI
Cosmic Microwave Background
The Stern–Gerlach experiment of 1922 provided further evidence of the quantum nature of the atom. When a beam of silver atoms was passed through a specially shaped magnetic field, the beam was split based on the direction of an atom’s angular momentum or spin. As this direction is random, the beam could be expected to spread into a line. Instead, the beam was split into two parts, depending on whether the atomic spin was oriented up or down. In 1924, Louis de Broglie proposed that all particles behave to an extent like waves. In 1926, Erwin Schrödinger used this idea to develop a mathematical model of the atom that described the electrons as three-dimensional waveforms rather than point particles. A consequence of using waveforms to describe particles is that it is mathematically impossible to obtain precise values for both the position and momentum of a particle at a given point in time; this became known as the uncertainty principle, formulated by Werner Heisenberg in 1926. In this concept, for a given accuracy in measuring a position one could only obtain a range of probable values for momentum, and vice versa. This model was able to explain observations of atomic behavior that previous models could not, such as certain structural and spectral patterns of atoms larger than hydrogen. Thus, the planetary model of
Millikan
Wallpaper
Pop-Up Book
Phenomenalism
Joan Livingstone
Political Sociology
The Universe In A Nutshell
WEST-ÖSTLICHER DIWAN Ronald Hayes Pearson
PROGRESSIVE STAMPING Ultrasonic Machining
ACTOR-NETWORK THEORY Age of Enlightenment
A DICTIONARY OF SOCIOLOGY Interstate Highway System
THE SOLAR SYSTEM AND BACK American Physical Society
EARLY CAREER FUNCTIONALISM Internal Combustion Engines
VOMITING

ROTTERDAM

INTERACTIVE

THERMOPLASTIC

CONSERVATIONISTS

TRIANGLE INEQUALITY

INERTIAL NAVIGATION SYSTEM

QUANTITATIVE DESIGNS

Forest Fragmentation

NATIONAL ROMANTICISM

Structuration Theory

ANGULAR ACCELERATION

Museum of Modern Art

STONE–VON NEUMANN THEOREM

Electromagnetic Radiation

ALL ARTICLES TO BE MERGED

Perpendicular Reusability

ENVIRONMENTAL COMMUNICATION

Computation Of The Interval
The development of the mass spectrometer allowed the mass of atoms to be measured with increased accuracy. The device uses a magnet to bend the trajectory of a beam of ions, and the amount of deflection is determined by the ratio of an atom’s mass to its charge. The chemist Francis William Aston used this instrument to show that isotopes had different masses. The atomic mass of these isotopes varied by integer amounts, called the whole number rule. The explanation for these different isotopes awaited the discovery of the neutron, an uncharged particle with a mass similar to the proton, by the physicist James Chadwick in 1932. Isotopes were then explained as elements with the same number of protons, but different numbers of neutrons within the nucleus. Other more rare types of radioactive decay include ejection of neutrons or protons or clusters of nucleons from a nucleus, or more than one beta particle. An analog of gamma emission which allows excited nuclei to lose energy in a different way, is internal conversion—a process that produces high-speed electrons that are not beta rays, followed by production of high-energy photons that are not gamma rays. A few large nuclei explode into two or more charged fragments of varying masses plus several neutrons, in a decay called spontaneous nuclear fission have recently don
The number of protons and neutrons in the atomic nucleus can be modified, although this can require very high energies because of the strong force. Nuclear fusion occurs when multiple atomic particles join to form a heavier nucleus, such as through the energetic collision of two nuclei. For example, at the core of the Sun protons require energies of 3–10 keV to overcome their mutual repulsion—the coulomb barrier—and fuse together into a single nucleus. Nuclear fission is the opposite process, causing a nucleus to split into two smaller nuclei—usually through radioactive decay. The nucleus can also be modified through bombardment by high energy subatomic particles or photons. If this modifies the number of protons in a nucleus, the atom changes to a different chemical element. The energy of an emitted photon is proportional to its frequency, so these specific energy levels appear as distinct bands in the electromagnetic spectrum. Each element has a characteristic spectrum that can depend on the nuclear charge, subshells filled by electrons, the electromagnetic interactions between the electrons and other factors. When a continuous spectrum of energy is passed through a gas or plasma, some of the photons are absorbed by atoms, causing electrons to change t
FRICTION
PATHOLOGY
MUNKKINIEMI
ORGANIZATIONS
JOAN LIVINGSTONE
A SAND CASTING MOLD
THE LOGIC OF MODERN PHYSICS
INTEGRATED GEOGRAPHY Aeroclimatic Atlases
PROGRESSIVE STAMPING Even-Aged Management
ECONOMIC IMPERIALISM Structuration Theory
STUDIO FURNITURE MOVEMENT Outline of Social Science
PAUL ADRIEN MAURICE DIRAC Availability Of Materials
DEDUCTIVE-NOMOLOGICAL MODEL Environmental Communication
Atoms lack a well-defined outer boundary, so their dimensions are usually described in terms of an atomic radius. This is a measure of the distance out to which the electron cloud extends from the nucleus. However, this assumes the atom to exhibit a spherical shape, which is only obeyed for atoms in vacuum or free space. Atomic radii may be derived from the distances between two nuclei when the two atoms are joined in a chemical bond. The radius varies with the location of an atom on the atomic chart, the type of chemical bond, the number of neighboring atoms (coordination number) and a quantum mechanical property known as spin. On the periodic table of the elements, atom size tends to increase when moving down columns, but decrease when moving across rows (left to right). Consequently, the smallest atom is helium with a radius of 32 pm, while one of the largest is caesium at 225 pm. When subjected to external forces, like electrical fields the shape of an atom may deviate from spherical symmetry. The deformation depends on the field magnitude and the orbital type of outer shell electrons, as shown by group-theoretical considerations. Aspherical deviations might be elicited for instance in crystals, where large crystal-electrical fields may occur at low-symmetry lattice sites. Significant ellipsoidal deformations hav
Proto Mono XLight

<table>
<thead>
<tr>
<th>Case-sensitive forms [CASE]</th>
<th>OpenType features</th>
</tr>
</thead>
<tbody>
<tr>
<td>OFF</td>
<td>ON</td>
</tr>
<tr>
<td>![Case-sensitive] !?¿---()[]{}<>»•@</td>
<td>![CASE-SENSITIVE] !?¿---()[]{}<>»•@</td>
</tr>
<tr>
<td>Non-dotted zero [ZERO]</td>
<td>0123456789</td>
</tr>
<tr>
<td>Superscript/superior [SUPS]</td>
<td>H0123456789</td>
</tr>
<tr>
<td>Fractions [FRAC]</td>
<td>01 1/2 3/4</td>
</tr>
<tr>
<td>Ordinals [ORDN]</td>
<td>2ª 2º № № № №</td>
</tr>
<tr>
<td>Stylistic set 1 Alternate a [SS01]</td>
<td>another animal</td>
</tr>
<tr>
<td>Stylistic set 2 Alternate g [SS02]</td>
<td>big guy, tough guy</td>
</tr>
<tr>
<td>Stylistic set 3 Alternate t [SS03]</td>
<td>to be or not to be</td>
</tr>
<tr>
<td>Stylistic set 4 Alternate C [SS04]</td>
<td>COOL CATS</td>
</tr>
<tr>
<td>Stylistic set 5 Alternate 3 [SS05]</td>
<td>JUMP AROUND</td>
</tr>
<tr>
<td>Stylistic set 6 Alternate Q [SS06]</td>
<td>CONQUEROR</td>
</tr>
<tr>
<td>Stylistic set 7 Alternate R [SS07]</td>
<td>LONE RANGER</td>
</tr>
<tr>
<td>Stylistic set 8 & 9: Circled numbers [SS08 & SS09]</td>
<td>012345678910 012345678910</td>
</tr>
<tr>
<td>Stylistic set 10 Arrows [SS10]</td>
<td>≥¬×÷≠~≈=</td>
</tr>
<tr>
<td>Stylistic set 11 Ornaments [SS11]</td>
<td>✔◆●♡♥</td>
</tr>
<tr>
<td>Stylistic set 12 Alternate numbers [SS12]</td>
<td>0123456789</td>
</tr>
</tbody>
</table>
Proto Mono Light

Case-sensitive forms

[Case-sensitive]

! ¿ — ()[]{}

Non-dotted zero

[ZERO]

0123456789

Superscript/superior

[SUPS]

H0123456789

Fractions

[FRAC]

1/4 1/2 3/4

Ordinals

[ORDN]

2a 2o № № № №

Stylistic set 1
Alternate a [SS01]

another animal

Stylistic set 2
Alternate g [SS02]

big guy, tough guy

Stylistic set 3
Alternate t [SS03]

to be or not to be

Stylistic set 4
Alternate C [SS04]

COOL CATS

Stylistic set 5
Alternate J [SS05]

JUMP AROUND

Stylistic set 6
Alternate Q [SS06]

CONQUEROR

Stylistic set 7
Alternate R [SS07]

LONE RANGER

Stylistic set 8 & 9:
Circled numbers

[SS08 & SS09]

012345678910

Stylistic set 10:
Arrows [SS10]

≥ ≤ × ÷ ± ∞

Stylistic set 11:
Ornaments [SS11]

□◆●♡♥

Stylistic set 12:
Alternate numbers

[SS12]

0123456789

OpenType features

[CASE-SENSITIVE]

!¿—()[]{}

0123456789

H0123456789

½ ½ ½

2a 2o № № № №

to be or not to be

COOL CATS

JUMP AROUND

CONQUEROR

LONE RANGER

012345678910

012345678910

012345678910

012345678910

←→↑↓↖↗↙↘

□◆●♡♥
Proto Mono Reg

<table>
<thead>
<tr>
<th>Feature</th>
<th>OFF</th>
<th>ON</th>
</tr>
</thead>
<tbody>
<tr>
<td>Case-sensitive forms</td>
<td>![Case-sensitive]</td>
<td>![CASE-SENSITIVE]</td>
</tr>
<tr>
<td>Non-dotted zero</td>
<td>0123456789</td>
<td>0123456789</td>
</tr>
<tr>
<td>Superscript/superior</td>
<td>H0123456789</td>
<td>H0 1 2 3 4 5 6 7 8 9</td>
</tr>
<tr>
<td>Fractions</td>
<td>1/4 1/2 3/4</td>
<td>¼ ½ ¾</td>
</tr>
<tr>
<td>Ordinals</td>
<td>2a 2o NO N° no n°</td>
<td>2 a 2 o N e N ° N e N e</td>
</tr>
<tr>
<td>Stylistic set 1 Alternate a</td>
<td>another animal</td>
<td>another animal</td>
</tr>
<tr>
<td>Stylistic set 2 Alternate g</td>
<td>big guy, tough guy</td>
<td>big guy, tough guy</td>
</tr>
<tr>
<td>Stylistic set 3 Alternate t</td>
<td>to be or not to be</td>
<td>to be or not to be</td>
</tr>
<tr>
<td>Stylistic set 4 Alternate C</td>
<td>COOL CATS</td>
<td>COOL CATS</td>
</tr>
<tr>
<td>Stylistic set 5 Alternate J</td>
<td>JUMP AROUND</td>
<td>JUMP AROUND</td>
</tr>
<tr>
<td>Stylistic set 6 Alternate Q</td>
<td>CONQUEROR</td>
<td>CONQUEROR</td>
</tr>
<tr>
<td>Stylistic set 7 Alternate R</td>
<td>LONE RANGER</td>
<td>LONE RANGER</td>
</tr>
<tr>
<td>Stylistic set 8 & 9:</td>
<td>012345678910</td>
<td>012345678910</td>
</tr>
<tr>
<td>Circed numbers</td>
<td>012345678910</td>
<td>012345678910</td>
</tr>
<tr>
<td>Stylistic set 10 Arrows</td>
<td>≥¬×÷∙×≈=</td>
<td>←→↑↓↖↗↙↘</td>
</tr>
<tr>
<td>Stylistic set 11 Ornaments</td>
<td>iṣtuvw</td>
<td>♦ ♦ ♦ ♦ ♦ ♦</td>
</tr>
<tr>
<td>Stylistic set 12 Alternate numbers</td>
<td>0123456789</td>
<td>0123456789</td>
</tr>
</tbody>
</table>
Proto Mono Bold

OpenType features

<table>
<thead>
<tr>
<th>OFF</th>
<th>ON</th>
</tr>
</thead>
<tbody>
<tr>
<td>Case-sensitive forms</td>
<td></td>
</tr>
<tr>
<td>Non-dotted zero</td>
<td><code>0123456789</code></td>
</tr>
<tr>
<td>Superscript/superior</td>
<td><code>H0123456789</code></td>
</tr>
<tr>
<td>Fractions</td>
<td><code>1/4</code> <code>1/2</code> <code>3/4</code></td>
</tr>
<tr>
<td>Ordinals</td>
<td><code>2a</code> <code>2o</code> <code>N°</code> <code>no</code> <code>n°</code></td>
</tr>
<tr>
<td>Stylistic set 1</td>
<td>another animal</td>
</tr>
<tr>
<td>Stylistic set 2</td>
<td>big guy, tough guy</td>
</tr>
<tr>
<td>Stylistic set 3</td>
<td>to be or not to be</td>
</tr>
<tr>
<td>Stylistic set 4</td>
<td>COOL CATS</td>
</tr>
<tr>
<td>Stylistic set 5</td>
<td>JUMP AROUND</td>
</tr>
<tr>
<td>Stylistic set 6</td>
<td>CONQUEROR</td>
</tr>
<tr>
<td>Stylistic set 7</td>
<td>LONE RANGER</td>
</tr>
<tr>
<td>Stylistic set 8 & 9</td>
<td><code>012345678910</code> <code>012345678910</code></td>
</tr>
<tr>
<td>Stylistic set 10</td>
<td>≥≤×÷±∓ ≥≤×÷±∓</td>
</tr>
<tr>
<td>Stylistic set 11</td>
<td>·· ·· ··</td>
</tr>
<tr>
<td>Stylistic set 12</td>
<td><code>0123456789</code> <code>0123456789</code></td>
</tr>
</tbody>
</table>

Production Type

www.productiontype.com © 2019
Information

Supported languages Afrikaans, Albanian, Asu, Basque, Bemba, Bena, Bosnian, Catalan, Chiga, Congo Swahili, Cornish, Croatian, Czech, Danish, Dutch, Embo, English, Esperanto, Estonian, Faoese, Filipino, Finnish, French, Galician, Ganda, German, Gusii, Hungarian, Icelandic, Indonesian, Inuktitut, Irish, Italian, Jola-Fonyi, Kabuverdianu, Kalenjin, Kamba, Kikuyu, Kinyarwanda, Latvian, Lithuanian, Luo, Luyia, Machame, Makhwana-Neetso, Makonde, Malagasy, Malay, Maltese, Mamb, Meru, Mozisyen, North Ndebele, Nama, Ndebele, Nazvegian, Bokmål, Nazvegian, Nyamwara, Nyankole, Oromo, Polish, Portuguese, Romanian, Romansh, Rombo, Rundi, Rwa, Samburu, Sango, Senu, Sanga, Shambala, Shona, Slovak, Slovenian, Soga, Somali, Spanish, Swahili, Swedish, Swiss, Swiss, German, Taita, Teso, Turkmen, Vunjo, Welsh, Zulu.

Designer Jean-Baptiste Levée

Contact Production Type
255 rue du Faubourg Saint-Antoine
75011 Paris, France
+33 (0)7 68 72 24 00
www.productiontype.com

Copyright © 2019 Production Type, all rights reserved.
Production Type is a registered trademark of Production Systems SAS.