Cobalte is the third in a group of loosely related sans serifs by Jean-Baptiste Levée. It follows the warm, modern path of Cogito and Gemeli but adds a subtle flaring to the strokes. Cobalte’s concave stems and angled terminals allude to the chiseled marks of a stone carver, bringing a bit of a monumental quality to what is otherwise an understated workhorse. This sense of stability and prestige was ideal for commissioned projects in the financial and real estate industries where the design was first conceived.

Levée cites various sources as inspiration, from inscriptive capitals of ancient Greece and ornamental French type of the 1920s to under-appreciated modern faces like Adrian Frutiger’s Icone and José Mendoza’s Pascal. What Cobalte adopts from these sources is just under its skin, however. The most apparent attributes are the utility and humanism that are at the core of all Levée’s designs. Bridging the two worlds of sans and serif, Cobalte has a style that is rarely associated with functional typefaces. Without too much fanfare, it can bolster flat text with a touch of distinction.

Cobalte Ultralight
Cobalte Light
Cobalte Regular
Cobalte Bold
Cobalte Black
Cobalte Ultralight Italic
Cobalte Light Italic
Cobalte Regular Italic
Cobalte Bold Italic
Cobalte Black Italic
Cobalte

Family overview

Astrophyllite

Lepidocrocite

Lorenzenite

Feldspathoid

Tarapacaite

Feldspathoid

Feroxyhyte

Chrysoberyl

Taranakite

Lavendulan
Cobalte Ultralight

Alice Aycock
Robert Morris
Defensive Wall Tin
Grillenburg Sandstone
Albrechtschraufite Unakite
Ihrlerstein Green Sandstone Ice
Gatehouseite The Star Of Asia Star Sapphire
CORNBERG SANDSTONE TIN The Pride Of Australia Opal Onyx
AUSTRALIAN STONEMASONS Jeremejevite Trebgast Sandstone
CORNBERG SANDSTONE ICE Pliezhausen Sandstone Franklinite
BARRY FLANAGAN TAKAKA MARBLE Hydrokenoelsmoreite Nabalamprophyllite
MATERIALS AND TECHNIQUES WAD The Aurora Australis Opa Wakabayashilite
REINHARDTSDORF SANDSTONE ICE Silesian Sandstone, In Lower Silesia Onyx
Cobalte Ultralight

GMELINITHE
ZEMANNITE
MARINO MARINI
STONE SCULPTURE
PORTLAND LIMESTONE
MIRÓ GRAVITY-DEPENDENT
PORTLAND ADMIRALTY ROACH UMBER
TONY ROSENTHAL KRESILAS
AUSTRALIAN STONEMASONS
CRUSHED AND PULVERIZED
SAND SCULPTURE BRIANYOUNGITE
THE FAMOUS LONDON STONE SARD
DONNAYITE LIMESTONE/DOLOMITE

Phosphophyllite Ohio Sandstone
Ihrlerstein Green Sandstone Jade
See Iran Stones Pernštejn Marble
The World’s Largest Uncut Black Opal Jet
Portland Bowers Basebed Dmitryivanovite
Syenite, Granodiorite Leistadt Sandstone
Cobalte Ultralight

Ore mills generate large amounts of waste, called tailings. For example, 99 tons of waste are generated per ton of copper, with even higher ratios in gold mining — because only 5.3 g of gold is extracted per ton of ore, a ton of gold produces 200,000 tons of tailings. These tailings can be toxic. Tailings, which are usually produced as a slurry, are most commonly dumped into ponds made from naturally existing valleys. These ponds are secured by impoundments (dams or embankment dams). In 2000 it was estimated that 3,500 tailings impoundments existed.

The waste is classified as either sterile or mineralised, with acid generating potential, and the movement and storage of this material forms a major part of the mine planning process. When the mineralised package is determined by an economic cut-off, the near-grade mineralised waste is usually dumped separately with view to later treatment should market conditions change and it becomes economically viable. Civil engineering design parameters are used in the design of the waste dumps, and special conditions apply to high-rainfall areas and to seismically active areas. Waste dump designs must meet all regulatory requirements of the country in whose jurisdiction the mine is located.

Mining techniques can be divided into two common excavation types: surface mining and sub-surface (underground) mining. Today, surface mining is much more common, and produces, for example, 85% of minerals (excluding petroleum and natural gas) in the United States, including 98% of metallic ores. Targets are divided into two general categories of materials: placer deposits, consisting of valuable minerals contained within river gravels, beach sands, and other unconsolidated materials; and lode deposits, where valuable minerals are found in veins, in layers, or in mineral grains generally distributed throughout a mass of actual rock. Both types of ore deposit, placer or lode, are mined by both surface and underground methods. Some mining, including much of the rare earth elements and uranium mining, is done by less-common methods, such as in-situ leaching, this technique involves digging neither at the surface nor underground. The extraction of target minerals by this technique requires that the
Cobalte Ultralight Italic

Pablo Serrano
Portoro Buono
Italian Stonemasons
Craigleith Sandstone Ice
Chlorastrolite Nehodiv Marble
Niobite-Tantalite Albrechtschraufite

The Most Valuable Black Opal Grès De Corbières

FOURMARIERITE AQUAMARINES Magnesiohastingsite Ferro-Actinolite
PABLO SERRANO PYROPHANITE Bollinger-Lehholz Fluor-Liddicoatite
THE AMERICAN GOLDEN TOPAZ The Science Of Extractive Metallurgy
FLUORAPOPHYLLITE SAND SCULPTURE The Pride Of Australia Opal Britten Sandstone
NEUSTADT-HAARDT SANDSTONE CHALK Teutoburg Forest Sandstone Thiospinel Group
KENTISH RAGSTONE/KENTISH RAG WAD Albrechtschraufite Ihrlerstein Green Sandstone
PYROLUSITE
CREMA NOVA
CLIPSHAM STONE
BRITTEN SANDSTONE
PERMANENT COLLECTION
THE OLYMPIC AUSTRALIS OPAL
MECHANICAL AND CHEMICAL TECHNIQUES
METAZEUNERITE HATCHETTITE
THE STUART SAPPHIRE GARNET
CASCADE CORAL JOEL SHAPIRO
VALUABLE METALS OR MINERALS LEAD
IHRLERSTEIN GREEN SANDSTONE UREA
TEUTOBURG FOREST SANDSTONE JADE
Magnesiohastingsite Tuperssuatsiata
Gian Lorenzo Bernini Arseniosiderite
The Star Of Asia Star Sapphire Alum
Soapstone Or Steatite The Black Prince’s Ruby
The Pride Of Australia Opal Britten Sandstone
Ihrlerstein Green Sandstone Antoine Bourdelle
A mineral is a naturally occurring substance, represented by a chemical formula, that is usually solid and inorganic, and has a crystal structure. It is different from a rock, which can be an aggregate of minerals or non-minerals and does not have a specific chemical composition. The exact definition of a mineral is under debate, especially with respect to the requirement a valid species be abiotic, and to a lesser extent with regard to it having an ordered atomic structure. The study of minerals is called mineralogy. There are over 5,300 known mineral species; over 5,070 of these have been approved by the International Mineralogical Association.

Minerals can be described by various physical properties which relate to their chemical structure and composition. Common distinguishing characteristics include crystal structure and habit, hardness, lustre, diaphaneity, colour, streak, tenacity, cleavage, fracture, parting, and specific gravity. More specific tests for minerals include magnetism, taste or smell, radioactivity and reaction to acid. Minerals are classified by key chemical constituents; the two dominant systems are the Dana classification and the Strunz classification. The silicate class of minerals is subdivided into six subclasses by the degree of polymerization in the chemical structure. These tetrahedra can be polymerized to give the subclasses: orthosilicates (no polymerization, thus single tetrahedra), disilicates...
Tetrahedrite Ice Sculpture
Louise Bourgeois Heilbronn Sandstone
The Rajaratna Ruby Mass
The Most Valuable Black Opal
Teutoburg Forest Sandstone Hagendorfite

THE PEARL OF LAO TZU ICE Objects From Stone Amaranbite
SERPIERITE CLINOHEDRITE Reinhardttsdorf Sandstone Urea
ELECTROLYTIC REDUCTION Portland Admiralty Roach Mask
THE EMPRESS OF AUSTRALIA OPAL Tennantite Teutoburg Forest Sandstone
CALUMETITE MANGANOTANTALITE Moschellandsbergite Albrechtschraufite
ANDYROBERTSITE CYANOTRICHITE Xocomecarlite Neckar Valley Sandstone
SUNSTONE
NAHCOLITE
RAVENSWORTH
SLIVENEC MARBLE
OBJECTS FROM STONE
CÔTE D’OR (ESCARPMENT)
ESPECIALLY THROUGH CHEMICAL ICE

ELECTROLYTIC REDUCTION
ST. MARGRETH SANDSTONE
SLIPFORM STONEMASONRY
THE BLACK STAR OF QUEENSLAND
PORTLAND ADMIRALTY ROACH JET
THE EMPRESS OF AUSTRALIA OPAL

The Aurora Australis Opa Topaz
Hanksite From Searles Lake Ice
Reinhardtsdorf Sandstone Mica
Cotswold Stone (Oolitic Limestone) Ice
Jacobsville Sandstone Gaston Lachaise
Magnesiohastingsite Manganvesuvianite
Cobalte Light

Crystal structure results from the orderly geometric spatial arrangement of atoms in the internal structure of a mineral. This crystal structure is based on regular internal atomic or ionic arrangement that is often expressed in the geometric form that the crystal takes. Even when the mineral grains are too small to see or are irregularly shaped, the underlying crystal structure is always periodic and can be determined by X-ray diffraction. Minerals are typically described by their symmetry content. Crystals are restricted to 32 point group.

In addition to simple body colour, minerals can have various other distinctive optical properties, such as play of colours, asterism, chatoyancy, iridescence, tarnish, and pleochroism. Several of these properties involve variability in colour. Play of colour, such as in opal, results in the sample reflecting different colours as it is turned, while pleochroism describes the change in colour as light passes through a mineral in a different orientation. Iridescence is a variety of the play of colours where light scatters off a coating on the surface of crystal, cleavage planes, or off layers having minor gradations in chemistry. In contrast, the play of colours in opal is caused

Phyllosilicates consist of sheets of polymerized tetrahedra. They are bound at three oxygen sites, which gives a characteristic silicon:oxygen ratio of 2:5. Important examples include the mica, chlorite, and the kaolinite-serpentine groups. The sheets are weakly bound by van der Waals forces or hydrogen bonds, which causes a crystallographic weakness, in turn leading to a prominent basal cleavage among the phyllosilicates. In addition to the tetrahedra, phyllosilicates have a sheet of octahedra (elements in six-fold coordination by oxygen) that balanced out the basic tetrahedra, which have a negative charge (e.g. [Si4O10]4−) These tetrahedra (T) and octahedra (O) sheets are stacked in a variety of combinations to create phyllosilicate groups. Within an octahedral sheet, there are three octahedral sites in a unit structure; however, not all of the sites may be occupied. In that case, the mineral is termed dioctahedral, whereas in other case it is termed trioctahedral.
Scapezzatore
Julio González
Betchouan-Violetta
Schweinstal Sandstone
Hanksite From Searles Lake
Ihrlerstein Green Sandstone Ruby
Especially Through Chemical Gris St Sébastien

PORTLAND ADMIRALTY ROACH Portland Independent Top Whitbed
PLIEZHAUSEN SANDSTONE ICE Portland Independent Basebed Ice
ALSAKHAROVITE-ZN HAPKEITE Smithsonian Museums’ Alexandrite
A BIRTHSTONETHE DOM PEDRO ONYX Reinhardtsdorf Sandstone An Angle Grinder
PEMBROKE LIMESTONE GROUP TOPAZ Mechanical And Chemical Techniques Mass
NEUSTADT-HAARDT SANDSTONE MASS Magnesiocummingtonite Frankhawthorneite
ALLOPHANE
THE CHISELS
KUKHARENKOITE
JOHN CHAMBERLAIN
PLANICOSTA SANDSTONE
AHEYLITE PHOSPHURANYLITE
IHRLERSTEIN GREEN SANDSTONE UMBITE
MEANSMINERAL MELANTERITE
PEMBROKE LIMESTONE GROUP
THE OLYMPIC AUSTRALIS OPAL
VALUABLE METALS OR MINERALS WAD
A BIRTHSTONE THE DOM PEDRO ONYX
SLIVENEI MARBLE SCHWERTMANNITE
Limestone/Dolomite Allabogdanite
Smithsonian Museums’ Alexandrite
Zaïrite Surface Or Subsurface Mine
Jordan Formation In The Upper Midwest Ice
Portland Admiralty Roach Sünitel Sandstone
Materials And Techniques Laurentide Green
Early writing on mineralogy, especially on gemstones, comes from ancient Babylonia, the ancient Greco-Roman world, ancient and medieval China, and Sanskrit texts from ancient India and the ancient Islamic World. Books on the subject included the Naturalis Historia of Pliny the Elder, which not only described many different minerals but also explained many of their properties, and Kitab al Jawahir (Book of Precious Stones) by Persian scientist Al Biruni. The German Renaissance specialist Georgius Agricola wrote works such as De re metallica (On Metals, 1556) and De Natura Fossilium.

A few minerals are chemical elements, including sulfur, copper, silver, and gold, but the vast majority are compounds. Before about 1947, the main method for identifying composition was wet chemical analysis, which involved dissolving a mineral in an acid such as hydrochloric acid (HCl). The elements in solution were identified using colorimetry, volumetric analysis or gravimetric analysis. A variation on the wet methods is atomic absorption spectroscopy, which also requires the dissolution of the sample but is much faster and cheaper than the above methods. The solution is vaporized and its absorption spectrum is measured in the visible and ultraviolet range. Other techniques are X-ray fluorescence.

Marcel Alexandre Bertrand (July 2, 1847 – February 13, 1907) was a French geologist born in Paris. He was the son of mathematician Joseph Louis François Bertrand (1822–1900), and son-in-law to physicist Éleuthère Mascart (1837–1908). He was a student at the École Polytechnique, and beginning in 1869 he attended the École des Mines de Paris. Beginning in 1877 he performed geological mapping studies of Provence, Jura Mountains and the Alps. In 1886 he became an instructor at the École Nationale Supérieure des Mines, and in 1896 was appointed a member of the Académie des sciences. Bertrand was a founder of modern tectonics. He is remembered for the orogenic “wave theory” of mountain-building and his introduction of the nappe hypothesis (nappe de charriage). His wave theory described a build-up of massive folds of earth taking place over successive geological eras, called the Caledonian, Hercynian and Alpine periods of orogeny. Later he added a fourth event called the Huronian orogeny, which took place in Precambrian time.
Tetrataenite
Alice Aycock
Grès De Attalens
Lossburg Sandstone
The Ruspoli Sapphire Ice
San Cristobal Ivory Cream Tin
Hydrokenoelsmoreite Gravity-Dependent
DUCHARME CHAMOIS JOEL Giovanni Francesco Rustici Tin
ST. MARGRETH SANDSTONE Musgravite Zhemchuzhnikovite
FRANKHAWTHORNEITE JET Coconino Sandstone Acanthite
FLUOR-BUERGERITE SHATTUCKITE Maulbronn Sandstone Frankdicksonite
THE AURORA AUSTRALIS OPA WAD Nehodiv Marble Nesselberg Sandstone
PLUMBOGUMMITE JAROSEWICHITE Smithsonian Museums’ Alexandrite Jet
PYROXENE
CATTIERITE
ARSENOPYRITE
CHARLES DESPIAOU
POTSDAM SANDSTONE
SCHWEINSTAL SANDSTONE
IHRLERSTEIN GREEN SANDSTONE TIN
DELVAUXITE TINCALCONITE Materials And Techniques Wad
GRILLENBURG SANDSTONE Aquia Creek Sandstone Library
KRENNERITE ALEXANDRITE Swedish Green Marble Okenite
SLATE MAGNESIOCUMMINGTONITE Limestone/Dolomite Manganotantalite
THE MOST VALUABLE BLACK OPAL Friedewald Sandstone Frankdicksonite
CHALK DUCHARME CHAMOIS JOEL Smithsonian Museums’ Alexandrite Jet
The Western tradition of sculpture began in Ancient Greece, and Greece is widely seen as producing great masterpieces in the classical period. During the Middle Ages, Gothic sculpture represented the agonies and passions of the Christian faith. The revival of classical models in the Renaissance produced famous sculptures such as Michelangelo's David. Modernist sculpture moved away from traditional processes and the emphasis on the depiction of the human body, with the making of constructed sculpture, and th

A gemstone or gem (also called a fine gem, jewel, or a precious or semi-precious stone) is a piece of mineral crystal, which, in cut and polished form, is used to make jewelry or other adornments. However, certain rocks (such as lapis lazuli) or organic materials that are not minerals (such as amber or jet), are also used for jewelry, and are therefore often considered to be gemstones as well. Most gemstones are hard, but some soft minerals are used in jewelry because of their luster or other physical properties that have aesthetic value. Rarity is another characteristic that lends value to a gemstone. Apart from jewelry, from earliest antiquity

The color of any material is due to the nature of light itself. Daylight, often called white light, is actually all of the colors of the spectrum combined. When light strikes a material, most of the light is absorbed while a smaller amount of a particular frequency or wavelength is reflected. The part that is reflected reaches the eye as the perceived color. A ruby appears red because it absorbs all the other colors of white light (green and blue), while reflecting the red. The same material can exhibit different colors. For example, ruby and sapphire have the same chemical composition (both are corundum) but exhibit different colors. Even the same gemstone can occur in many different colors: sapphires show different shades of blue and pink and "fancy sapphires" exhibit a whole range of other colors from yellow to orange-pink, the latter called "padparadscha sapphire". This difference in color is based on the atomic structure of the stone. Although the di
Hagendorfite
Tuffeau Stone
Dan Flavin Sonata
Ibbenbüren Sandstone
Slipform Stonemasonry Tin
Canfieldite Hydrokenoelsmoreite
Magnesiocummingtonite Magnesiohastingsite
KORDEL SANDSTONE KORDEL Neustadt-Haardt Sandstone Skała
ONYX PSEUDOWOLLASTONITE Ikaite Neustadt-Haardt Sandstone
PORTLAND BOWERS BASEBED Ihrlerstein Green Sandstone Indite
IHRLERSTEIN GREEN SANDSTON ICE Magnesiocummingtonite Ragstone/Kentish
NEUSTADT-HAARDT SANDSTONE WAD Reinhardtsdorf Sandstone Stone Sculpture
IHRLERSTEIN GREEN SANDSTONE ICE Magnesiocummingtonite Tellurobismuthite
Cobalte Italic

ZEMANNITE
SPODUMENE

TYPES OF STONE
NOCHE TRAVERTINE
JEAN-ANTOINE HOUDON
NECKAR VALLEY SANDSTONE
NEUSTADT-HAARDT SANDSTONE CERIUM

PORTLAND BOWERS BASEBED Ferrohortonolite Tellurobismuthite
UMMENDORF SANDSTONE ICE The Most Valuable Black Opal Jet
PIERRE DE JAUMONT EDENITE Italian Stonemasons Ferrotantalite
FRANKHAWTHORNEITE CLINOZOISITE Magnesiocummingstonite Picropharmacolite
IHRLERSTEIN GREEN SANDSTONE JET Smithsonian Museums’ Alexandrite Coltan
ALUMINIUMGEOMETALLURGY GABBRO Hydrokenoelsmoreite Magnesiohastingsite
Cameo is a method of carving an object such as an engraved gem, item of jewellery or vessel made in this manner. It nearly always features a raised (positive) relief image; contrast with intaglio, which has a negative image. Originally, and still in discussing historical work, cameo only referred to works where the relief image was of a contrasting colour to the background; this was achieved by carefully carving a piece of material with a flat plane where two contrastingly different in colour met, removing all the first colour except for the image to leave a contrasting background. Today

Cahnite is a brittle white or colorless mineral that has perfect cleavage and is usually transparent. It usually forms tetragonal-shaped crystals and it has a hardness of 3 mohs. Cahnite was discovered in the year 1921. It was named Cahnite to honor Lazard Cahn (1865–1940), who was a mineral collector and dealer. It is usually found in the Franklin Mine, in Franklin, New Jersey. Until the year 2002, when a sample of cahnite was found in Japan, that was the only known place that cahnite was located. The geological environment that it occurs in is in pegmatites cutting a changed zinc orebody. The chemical formula for cahnite is Ca2B[AsO4](OH)4. It is made up of 26.91% calcium, 3.63% boron, 25.15% arsenic, 6.2% oxygen.

Hardstone carving is a general term in art history and archaeology for the artistic carving of predominantly semi-precious stones (but also of gemstones), such as jade, rock crystal (clear quartz), agate, onyx, jasper, serpentine, or carnelian, and for an object made in this way. Normally the objects are small, and the category overlaps with both jewellery and sculpture. Hardstone carving is sometimes referred to by the Italian term pietre dure; however, pietre dura (with an “a”) is the common term used for stone inlay work, which causes some confusion. From the Neolithic period until about the 19th century such objects were among the most highly prized in a wide variety of cultures, often attributed special powers or religious significance, but today coverage in non-specialist art history tends to be relegated to a catch-all decorative arts or “minor arts” category. The types of objects carved have included those with ritual or religious purposes, engraved gems as signet rings and other kinds of seal, handles, belt hooks and similar items, v
Noir Taillon
Vantasselit
Fantastico Onyx
See Stones Of India
Pablo Bollinger-Lehholz
Shot Put Cuprosklodowskite
Portland Independent Bottom Whitbed

CÔTE D’OR (ESCARPMENT) Mascagnite Pharmacosiderite
WORZELDORF SANDSTONE Anglesite The Rajaratna Ruby
IGNEOUS STONES GRANITE Alsakharovite-Zn Hydrohalite
SLATE THE ROSSER REEVES RUBY Red Multicolor Onyx Santabarbaraite
ESPECIALLY THROUGH CHEMICAL Mooihoekite The Black Prince’s Ruby
TEUTOBURG FOREST SANDSTONE The Science Of Extractive Metallurgy
HELIODOR
LUDWIGITE
GLAUCOPHANE
PIERRE D’EUVILLE
ENTRADA SANDSTONE
AMERICAN STONEMASON
PIESBERG SANDSTONE
GETCHELLITE
COMBINATION OF SEVERAL
DUCHARME CHAMOIS JOEL
IGNEOUS STONES GRANITE
TODOROKITE ALSAKHAROVITE-ZN
TEUTOBURG FOREST SANDSTONE
IHRLERSTEIN GREEN SANDSTONE

San Cristobal Ivory Cream Jet
The Halley’s Comet Opal Iron
Actinolite Manganvesuvianite
Uytenbogaardtite Georgerobinsonite
Aquia Creek Sandstone Xanthoconite
Portland Independent Basebed Slate
Jeremejevite is a rare aluminium borate mineral with variable fluoride and hydroxide ions. Its chemical formula is \(\text{Al}_6\text{B}_5\text{O}_{15}(\text{F},\text{OH})_3 \). It was first described in 1883 for an occurrence on Mt. Soktui, Nerschinsk district, Adun-Chiloln Mountains, Siberia. It was named after Russian mineralologist Pavel Vladimirovich Eremeev (Jeremejev, German) (1830–1899). It occurs as a late hydrothermal phase in granitic pegmatites in association with albite, tourmaline, quartz and rarely gypsum. It has also been rare

Most hardstones, certainly all quartz types and jade, have a crystalline structure that does not allow detailed carving by edged tools without great wastage and a poor finish. Working them has always been very time-consuming, which together with the cost of rare materials often traded from very far away, has accounted for the great expense of these objects. After sawing and perhaps chiselling to reach the approximate shape, stones were mostly cut by using abrasive powder from harder stones in conjunction with a hand-drill, probably of ten set in a lathe, and by grinding-wheels. Emery has been mined for

Different regions have made minor modifications to the general method of construction — sometimes because of limitations of building material available, but also to create a look that is distinctive for that area. Whichever method is used to build a dry stone wall, considerable skill is required. Selection of the correct stone for every position in the wall makes a enormous difference to the lifetime of the finished product, and a skilled waller will take time making the selection. As with many older crafts, skilled wallers, today, are few in number. With the advent of modern wire fencing, fields can be fenced with much less time and expense using wire than using stone walls; however, the initial expense of building dykes is offset by their sturdiness and consequent long, low-maintenance lifetimes. As a result of the increasing appreciation of the landscape and heritage value of dry stone walls, wallers r
Djerfisherite
Ernst Barlach
Fluor-Liddicoatite
Rorschach Sandstone
Umberto Boccioni Volume
The Aurora Australis Opa Mass
Portland Admiralty Roach Alexander Calder

RAMMELSBERGITE MAJORITE Uklonskovite Cuprosklodowskite
THE FAMOUS LONDON STONE Reinhardtsdorf Sandstone Agate
KORDEL SANDSTONE KORDEL Parachrysotile Uytenbogaardtite
REINHARDTSDORF SANDSTONE JADE Jordan Formation In The Upper Midwest
BOLLINGER-LEHHOLZ AURICHALCITE Magnesiohastingsite Manganocolumbite
PORTLAND ADMIRALTY ROACH APICA Silesian Sandstone, In Lower Silesia Wad
MIRABILITE
SCORZALITE
FAUSKE MARBLE
HARLEQUIN PRINCE
BENEDETTO DA MAIANO
LOCHARBRIGGS SANDSTONE
BENTHEIM AND GILDEHAUS SANDSTONE
BEARL THE FIRE QUEEN OPAL
KORDEL SANDSTONE KORDEL
ALBRECHTSCHRAUFITE ROCK
VALUABLE METALS OR MINERALS JET
FERGUSONITE THE RAJARATNA RUBY
VALUABLE METALS OR MINERALS JET
Carpholite Hydrokenoelsmoreite
Portland Admiralty Roach Trona
Especially Through Chemical Ice
A Piece Of Table Mountain Sandstone Ice
Moschellandsbergite Betchouan-Violetta
Portland New Independent Whitbed Wad
Some dry-stone wall constructions in north-west Europe have been dated back to the Neolithic Age. Some Cornish hedges are believed by the Guild of Cornish Hedgers to date from 5000 BCE, although there appears to be little dating evidence. In County Mayo, Ireland, an entire field system made from dry-stone walls, since covered in peat, have been carbon-dated to 3800 BCE. The cyclopean walls of the acropolis of Mycenae have been dated to 1350 BCE and those of Tiryns slightly earlier. In Belize, the Mayan ruins at Lubaantun illustrate use

In mineralogy and crystallography, a crystal structure is a unique arrangement of atoms, ions or molecules in a crystalline liquid or solid. It describes a highly ordered structure, occurring due to the intrinsic nature of its constituents to form symmetric patterns. The crystal lattice can be thought of as an array of small boxes’ infinitely repeating in all three spatial directions. Such a unit cell is the smallest unit of volume that contains all of the structural and symmetry information to build-up the macroscopic structure of the lattice by translation. Patterns are located upon the points of a lattice, which is an array of points repeating periodically in three dimensions. The length

Crystallography is the experimental science of determining the arrangement of atoms in the crystalline solids (see crystal structure). The word “crystallography” derives from the Greek words crystallo n “cold drop, frozen drop”, with its meaning extending to all solids with some degree of transparency, and grapho “I write”. In July 2012, the United Nations recognised the importance of the science of crystallography by proclaiming that 2014 would be the International Year of Crystallography. X-ray crystallography is used to determine the structure of large biomolecules such as proteins. Before the development of X-ray diffraction crystallography (see below), the study of crystals was based on physical measurements of their geometry. This involved measuring the angles of crystal faces relative each other and to theoretical reference axes (crystallographic axes), and establishing the symmetry of the crystal in question. This physical measurement is carried out using a goniometer. The position in
Cobalte Black

Stantienite

Deer Brown

Melanophlogite

Albrechtschraufite

Ibbenbüren Sandstone

Agesander Of Rhodes Onyx

Reinhardtsdorf Sandstone Abenakiite

CORDEROITE EOSPHORITE Bollinger-Lehholz Halloysite
ONYX FLUOR-BUERGERITE The American Golden Topaz
SIEBIGERODE SANDSTONE Gananite Albrechtschraufite
SLIPFORM STONEMASONRY IRON The Black Prince’s Ruby Sarabauite
OBERSULZBACH SANDSTONE JET Teutoburg Forest Sandstone Quartz
TEUTOBURG FOREST SANDSTONE Cotswold Stone (Oolitic Limestone)
Cobalte Black

SHUNGITE
STRZEGOM
SINKANKASITE
GIOVANNI PISANO
BRITTEN SANDSTONE
DUCHARME GRIS CENDRE
PORTLAND INDEPENDENT BASEBED

BOLLINGER-LEHHOLZ RED The American Golden Topaz
CÔTE D’OR (ESCARPMENT) Chilean Magnesiohastingsite
AQUIA CREEK SANDSTONE Rambergite Jimthompsonite
GARNET DUCHARME JAUNE PALE The Star Of Asia Star Sapphire Jade
OBERNKIRCHEN SANDSTONE ICE Pablo Picasso Jean-Antoine Houdon
FRAIPONTITE METATORBERNITE Kentish Ragstone/Kentish Rag Gold
Limestone is a sedimentary rock composed largely of the minerals calcite and aragonite, which are different crystal forms of calcium carbonate (CaCO₃). Most limestone is composed of skeletal fragments of marine organisms such as coral, forams and molluscs. Limestone makes up about 10% of the total volume of all sedimentary rocks. The solubility of limestone in water and weak acid solutions leads to karst landscapes, in which water erodes the limestone over thousands of years.

Coral sand mining is a significant industry in some areas, and can have damaging environmental effects. Over 500,000 tons of coral sand are mined annually from Mauritius. Many Comoros beaches have been scarred by sand mining. Over 250 tons of shells and corals were exported from Tanzania in 1974. Exploitive collection has moved from the depleted areas off Tanzania and Kenya to the islands of Zanzibar and Mafia. Such extensive mining can be very harmful to reef ecosystems and beaches. In an effort to prevent damage from reef sand mining, the Convention on international trad...
Cobalte Black Italic

Wad Jennite
Ketton Stone
Alsakharovite-Zn
Metamorphic Marble
Ashford Black Marble Jet
Tuffeau Stone Bayfield Group
Reinhardtsdorf Sandstone Portland Stone

NECKAR VALLEY SANDSTONE
ALUMINITE PORTORO BUONO
MAGNESIOHASTINGSITE CUT
NEUSTADT-HAARDT SANDSTONE ICE
THE PRIDE OF AUSTRALIA OPAL WAD
DUCHARME JAUNE ADIRONDACK ICE

Neustadt-Haardt Sandstone Jet
Agate Magnesiocummingtonite
Crushing, Hydrokenoelsmoreite
Umangite The Black Star Of Queensland
Weight Of 733 Carats Lipovský Mramor
Moschellandsbergite Vanadiocarpholite
MAGADIITE
DARK STEEL
RAPIDCREEKITE
WILLIAM G. TUCKER
BRITISH STONEMASONS
AUSTRALIAN STONEMASONS
THE EMPRESS OF AUSTRALIA OPAL WAD

NECKAR VALLEY SANDSTONE
THE AURORA AUSTRALIS OPA
NORTHUPITE LEUCOPHANITE
IGNEOUS STONES GRANITE IKEBANA
MAGNESIOHASTINGSITE CORNUBITE
NEUSTADT-HAARDT SANDSTONE ICE

Ragstone/Kentish Scapezzatore
Pelagosite Limestone/Dolomite
Ihrlerstein Green Sandstone Jet
Largest Star Sapphire In The World Wad
Portland Bowers Lynham Whitbed Jade
Combination Of Several Isamu Noguchi
Banker masons are workshop-based, and specialize in working the stones into the shapes required by a building's design, this set out on templets and a bed mould. They can produce anything from stones with simple chamfers to tracery windows, detailed mouldings and the more classical architectural building masonry. When working a stone from a sawn block, the mason ensures that the stone is bedded in the right way, so the finished work sits in the building in the same orientation as it was formed on the ground. Occasiona

Masonry is the building of structures from individual units laid in and bound together by mortar; the term masonry can also refer to the units themselves. The common materials of masonry construction are brick, building stone such as marble, granite, travertine, and limestone, cast stone, concrete block, glass block, and cob. Masonry is generally a highly durable form of construction. However, the materials used, the quality of the mortar and workmanship, and the pattern in which the units are assembled can significantly affect the durability of the overall masonry construction. A person who constructs masonry is called a mason or bricklayer. Wh

The Ancients heavily relied on the stonemason to build the most impressive and long lasting monuments to their civilizations. The Egyptians built their pyramids, the civilizations of Central America had their step pyramids, the Persians their palaces, the Greeks their temples, and the Romans their public works and wonders (See Roman Architecture). Among the famous ancient stonemasons is Sophroniscus, the father of Socrates, who was a stone-cutter. Castle building was an entire industry for the medieval stonemasons. When the Western Roman Empire fell, building in dressed stone decreased in much of Western Europe, and there was a resulting increase in timber-based construction. Stone work experienced a resurgence in the 9th and 10th centuries in Europe, and by the 12th century religious fervour resulted in the construction of thousands of impressive churches and cathedrals in stone across Western Europe. Bavarian stonemasons, c. 1505 Medieval sto
Cobalte

<table>
<thead>
<tr>
<th>Production Type</th>
<th>OpenType features</th>
</tr>
</thead>
<tbody>
<tr>
<td>OFF</td>
<td>ON</td>
</tr>
<tr>
<td>All caps</td>
<td>ALL SMALL CAPS</td>
</tr>
<tr>
<td>[CPSP]</td>
<td>[C2SC]</td>
</tr>
<tr>
<td>Case-sensitive forms</td>
<td>Small Capitals</td>
</tr>
<tr>
<td>[CASE]</td>
<td>[SNCP]</td>
</tr>
<tr>
<td>Small capitals</td>
<td>All Small Caps</td>
</tr>
<tr>
<td>Standard ligatures</td>
<td>Historical ligatures</td>
</tr>
<tr>
<td>[LIGA]</td>
<td>[MIST]</td>
</tr>
<tr>
<td>Discretionary ligatures</td>
<td>Slashed zero</td>
</tr>
<tr>
<td>[DLIG]</td>
<td>[ZERO]</td>
</tr>
<tr>
<td>Tabular lining figures</td>
<td>Tabular oldstyle figures</td>
</tr>
<tr>
<td>[TNUM + LNUM]</td>
<td>[TNUM + ONUM]</td>
</tr>
<tr>
<td>Proportional lining figures</td>
<td>Proportional oldstyle figures</td>
</tr>
<tr>
<td>[PNUM + LNUM]</td>
<td>[PNUM + ONUM]</td>
</tr>
</tbody>
</table>

Lowercase
- !Case-sensitive !¡?¿-–—()
- !Small Caps \[\]{}‹›«»·@
- !Small Capitals f f fb f f fh f f fj f f fk f f ft
- !Th ct st sp f f f fh f f fh f f fj f f fk ft
- !Historical 0 1 2 3 4 5 6 7 8 9

UPPERCASE
- !Case-sensitive !¡?¿-–—()
- !Small Caps \[\]{}‹›«»·@
- !Small Capitals f f fb f f fh f f fj f f fk f f ft
- !Th ct st sp f f f fh f f fh f f fj f f fk ft
- !Historical 0 1 2 3 4 5 6 7 8 9

© 2015 www.productiontype.com
OpenType features

<table>
<thead>
<tr>
<th>Feature</th>
<th>OFF</th>
<th>ON</th>
</tr>
</thead>
<tbody>
<tr>
<td>Superscript/Superior [SUPS]</td>
<td>Hsuperscript H0123456789 (_\cdot()_{-\times\div=\€$\ç})</td>
<td>Hsuperscript H0123456789 (_\cdot()_{-\times\div=\€$\ç})</td>
</tr>
<tr>
<td>Subscript/Inferior [SINF]</td>
<td>H0123456789 (_\cdot()_{-\times\div=\€$\ç})</td>
<td>H0123456789 (_\cdot()_{-\times\div=\€$\ç})</td>
</tr>
<tr>
<td>Numerator [NUMR]</td>
<td>H0123456789 (_\cdot()_{-\times\div=\€$\ç})</td>
<td>H0123456789 (_\cdot()_{-\times\div=\€$\ç})</td>
</tr>
<tr>
<td>Denominator [DNOM]</td>
<td>H0123456789 (_\cdot()_{-\times\div=\€$\ç})</td>
<td>H0123456789 (_\cdot()_{-\times\div=\€$\ç})</td>
</tr>
<tr>
<td>Fractions [FRAC]</td>
<td>1/4 1/2 3/4 2/3 7/8 0/0 0/00</td>
<td>(\frac{1}{4} \frac{1}{2} \frac{3}{4} \frac{2}{3} \frac{7}{8} 0% 0%)</td>
</tr>
<tr>
<td>Ordinals [ORDN]</td>
<td>2ą 2ö No N° no n°</td>
<td>2³ 2º N° N° N° N°</td>
</tr>
<tr>
<td>Stylistic set 1</td>
<td>another animal</td>
<td>another animal</td>
</tr>
<tr>
<td>Alternate a [SS01]</td>
<td>big guy, tough guy</td>
<td>big guy, tough guy</td>
</tr>
<tr>
<td>Stylistic set 2</td>
<td>Alternate g [SS02]</td>
<td></td>
</tr>
<tr>
<td>Circled numbers [SS03 & SS04]</td>
<td>012345678910</td>
<td>012345678910</td>
</tr>
<tr>
<td>Stylistic set 3 & 4: arrows [SS05]</td>
<td>(\leftrightarrow) (\uparrow) (\downarrow) (\rightarrow) (\leftarrow) (\Rightarrow) (\Leftarrow)</td>
<td></td>
</tr>
</tbody>
</table>
| Stylistic set 6: ornaments [SS06] | rstuvwxyz | ?•••❤❤
Information

Supported languages
Afrikaans, Albanian, Asu, Basque, Bemba, Bena, Bosnian, Catalan, Chiga, Congo Swahili, Cornish, Croatian, Czech, Danish, Dutch, Embo, English, Esperanto, Estonian, Faoese, Filipino, Finnish, French, Galician, Ganda, German, Gusii, Hungarian, Icelandic, Indonesian, Irish, Italian, Jola-Fonyi, Kabuverdiano, Kalenjin, Kamba, Kikuyu, Kinyarwanda, Latvian, Lithuanian, Luo, Luyia, Machame, Makhwawa-Meeото, Makonde, Malagasy, Malay, Maltese, Manx, Mezu, Mozisyen, North Ndebele, Norwegiaн Bokmål, Norwegiaн Nynorsk, Nyankole, Oromo, Polish, Portuguese, Romanian, Romansh, Rombo, Rundi, Rwa, Samburu, Sango, Sangu, Sena, Shambala, Shona, Slovak, Slovenian, Soga, Somali, Spanish, Swahili, Swedish, Swiss German, Taita, Teso, Turkish, Vunjo, Welsh, Zulu.

Designer
Jean-Baptiste Levée

Contact
Production Type
182, rue de Charenton
75012 Paris, France
+33 (0)1 77 32 63 07
www.productiontype.com

Copyright
© 2015 Production Type, all rights reserved.
Production Type is a registered trademark of Production Systems SAS.
Cobalte is a registered trademark of Production Systems SAS.